Exercise 97

The number of bacteria in a refrigerated food product is given by $N(T)=23 T^{2}-56 T+1$, $3<T<33$, where T is the temperature of the food. When the food is removed from the refrigerator, the temperature is given by $T(t)=5 t+1.5$, where t is the time in hours.
(a) Find the composite function $N(T(t))$.
(b) Find the time (round to two decimal places) when the bacteria count reaches 6752 .

Solution

Plug the formula for $T(t)$ into the formula for $N(T)$ and simplify.

$$
\begin{aligned}
N(T(t)) & =23[T(t)]^{2}-56[T(t)]+1 \\
& =23(5 t+1.5)^{2}-56(5 t+1.5)+1 \\
& =23\left(25 t^{2}+15 t+2.25\right)-280 t-84+1 \\
& =575 t^{2}+345 t+51.75-280 t-83 \\
& =575 t^{2}+65 t-31.25
\end{aligned}
$$

Therefore,

$$
N(T(t))=575 t^{2}+65 t-31.25
$$

To get the time when the bacteria count reaches 6752 , set $N=6752$ and solve the equation for t.

$$
6752=575 t^{2}+65 t-31.25
$$

Subtract 6752 from both sides.

$$
\begin{equation*}
575 t^{2}+65 t-6783.25=0 \tag{1}
\end{equation*}
$$

Use the quadratic formula.

$$
t=\frac{-65 \pm \sqrt{65^{2}-4(575)(-6783.25)}}{2(575)}=\frac{-65 \pm \sqrt{15605700}}{1150}
$$

The two times that satisfy equation (1) are

$$
\begin{aligned}
& t=\frac{-65+\sqrt{15605700}}{1150} \approx 3.38 \\
& t=\frac{-65-\sqrt{15605700}}{1150} \approx-3.49 .
\end{aligned}
$$

The second time is negative and can be discarded. Therefore, it takes about 3.38 hours for the bacteria count to reach 6752 .

